

Software Book: Patent Printer

Patent Document Printer
A Patent Document Printer fetches
patent and patent application
images from the US Patent and
Trademark Office (USPTO) website
and organizes them into a single
Portable Document Format (PDF)
file. Use this utility as a free
alternative to pay-per-patent
retrieval services.

Daniel Lanovaz

Los Gatos, California

September 10, 2004

September 10, 2004 Page 1 of 31

Patent Printer
his software book describes how to programmatically fetch
patent and patent application images from the U.S. Patent
and Trademark Office (USPTO) website and organize them
into a single Portable Document Format (PDF) file. Use this
software book as an alternative to pay-per-patent sites.

Introduction
The US Patent and Trademark Office website1 (“site”) contains a vast
database of patent applications and issued patents (“patents”). The site
implements a search mechanism that allows the public to find, read, and
print patents.

The site implements the rendering of a patent within a web browser by
converting the patent into Hypertext Markup Language (HTML). This
display mechanism, unfortunately, does not faithfully reproduce the
original patent as it omits drawings, original pagination, and other
important information.

As an additional site service, each USPTO patent has a link to the
“images” associated with the patent. These Tagged Image File Format
(TIFF) images are scans of the original patent or application. There are,
however, three problems with the implementation of image viewing on the
USPTO site:

1. Users must install a TIFF viewing plug-in.

2. Only one page is viewable at a time.

3. Printing an entire patent (or application) is unsupported.

Others have noted the inability to fetch entire patent documents from the
site. A useful utility called pat2pdf written by Oren Tirosh and Thomas
Boege is the genesis of this application2. It is a Unix shell script that
operates in a similar manner to this application. Oren and Thomas
describe why they created pat2pdf:

To help open source developers who increasingly find themselves
facing software patent problems. Actually, the real reason is because I
am a cheap bastard who doesn't want to pay for downloading a PDF

1 http://www.uspto.gov

2 http://www.tothink.com/pat2pdf/

September 10, 2004 Page 2 of 31

http://www.uspto.gov/
http://www.tothink.com/pat2pdf/

but I thought it would be a good place to make a point about the
increasing abuse of software patents.

The main differences between PatentPrinter and pat2pdf is that
PatentPrinter uses a slightly modified image fetching algorithm, is more
easily used within [Java] application servers, and is written as a[n]
[experimental] software book. In addition, this application attempts to
reduce dependent technologies by bundling together PDF document
generation code. While pat2pdf requires Bash, Ghostscript, Tiff2ps, and
Lynx, PatentPrinter only requires the presence of a Java Virtual Machine
(JVM)1, and serves as a stepping-stone for building a web service such as
the one implemented by the pat2pdf.com2 site.

Software Books
PatentPrinter is a software book: an Extensible Markup Language (XML)
representation of software structured as a book rather than source text
files. A software book compiler translates the text you are reading into the
final application executed by a JVM. For further details on Software Books
please read the essay, “Thinking with Style.”3

In the appendix of this software book, we provide some self-analysis on
using the model of a software book to write this patent printer utility.

Disclaimer
The USPTO clearly states that patents are published in the public domain
and are not subject to copyright restrictions4. They also publish a clear
warning to clients who use software such as the PatentPrinter for
automated download of patent images:

Users employing third-party software which downloads multiple pages
of a patent at once may find this practice subjects them to denial of
access to the databases if they exceed PTO's maximum allowable
activity levels.5

1 The PatentPrinter application will be ported to .NET.

2 The pat2pdf website is unfortunately charging a per-patent fee.

3 http://www.lanovaz.org/daniel/Shared%20Documents/Thinking%20with%20Style

4 http://www.uspto.gov/main/ccpubguide.htm

5 http://www.uspto.gov/patft/help/images.htm

September 10, 2004 Page 3 of 31

http://www.pat2pdf.com/
http://www.lanovaz.org/daniel/Shared Documents/Thinking with Style
http://www.uspto.gov/main/ccpubguide.htm
http://www.uspto.gov/patft/help/images.htm

Please respect the wishes of the USPTO and do not abuse their site with
this software.

License
This work is licensed under the Creative Commons Attribution License. To
view a copy of this license, visit

http://creativecommons.org/licenses/by/2.0/

or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,
California 94305, USA.

Using the Patent Printer
This application is packaged as a Java archive (jar)1 file and supports the
following five arguments:

Argument Purpose
--help Print usage information.
--patent <patentNumber> Fetch a patent from the USPTO site

and place it into a PDF file whose
name is <patentNumber>.pdf.

--application <applicationNumber> Fetch a patent application from the
USPTO site and place it into a PDF
file whose name is
<applicationNumber>.pdf.

--file <filename> Use the given filename rather than
using the patent number.

--dir <directory> Place the file in the given directory.

Examples
The following examples assume a JVM is installed on the target system.

The following example fetches patent 6,000,000 from the USPTO site and
prints the patent to the file 6000000.pdf:

1 Java archive (jar) files are a packaging mechanism for Java applications and libraries.

September 10, 2004 Page 4 of 31

http://creativecommons.org/licenses/by/2.0/

java –jar PatentPrinter.jar --patent 6000000

The following example fetches application number 2002006982 from the
USPTO site and prints the application to the file 2002006982.pdf:

java –jar PatentPrinter.jar --application 2002006982

Patent Printer Application
The patent printer application operates as shown in Figure 1. The
command line options are processed 1 and the patent or application
number as well as the destination location for the PDF file are calculated
2. Based on the document number the application performs a network
fetch to one of four USPTO image servers 3. The algorithm used to
determine which image server to connect with is described in the section
“Patent Office Website” on page 14. The application then uses the iText
PDF package to convert fetched TIFF images into the final PDF file 4.

Figure 1 Patent Printer Process

package com.precedia.patents;

Patent Printer Support Classes
The Patent Printer application is a collection of three packages bundled
together in the final Java archive file:

Package Purpose
com.precedia.patents The package that implements the

patent fetching algorithm and
implements the application’s main
entry point.

Arguments:
--patent 6000000

USPTO image
server 1

1

PatentPrinter USPTO image
server 2 Engine

2
3

USPTO image
server 3

4 USPTO image
server 4

September 10, 2004 Page 5 of 31

com.lowagie.text The iText9 open-source package
that implements the PDF writing
logic.

gnu.getopt A port of the GNU getopt()
function for Java applications.

The following five classes from the base Java Input/Output package are
required to read images from the USPTO website and to write the final
PDF file to the host file system.

import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.File;

The following two classes are used to construct Uniform Resource Locators
(URL) used to access TIFF images on the USPTO site.

import java.net.URL;
import java.net.MalformedURLException;

The following four classes are from the iText PDF processing package used
to construct PDF files and insert images into pages within the file.

import com.lowagie.text.Document;
import com.lowagie.text.DocumentException;
import com.lowagie.text.Image;
import com.lowagie.text.pdf.PdfWriter;

The following two classes process the application’s command-line
arguments.

import gnu.getopt.Getopt;
import gnu.getopt.LongOpt;

Class PatentPrinter
The main engine of the patent printer application is the PatentPrinter
class. This class implements the main Java entrypoint (main), parses
command-line arguments, fetches images from the USPTO site, and
generates the final PDF file. This class is represented in Figure 1 as the
“Patent Printer Engine.”

9 http://www.lowagie.com/iText/

September 10, 2004 Page 6 of 31

http://www.lowagie.com/iText/

public class PatentPrinter {

Members
The PatentPrinter class maintains three private member variables that
correspond to the command-line arguments.

The documentNumber variable is a string that comprises the --patent or --
application command-line parameter value. Note that the current
implementation does little validity checking on this argument. If the
document number is invalid the PatentPrinter will be unable to fetch
images from the USPTO site and a zero-sized document error will be
reported.

private String documentNumber = null;

The outputFilename variable is a string that comprises the --file
command-line parameter. This filename will be used rather than the
default document number.

private String outputFilename = null;

The outputDirectory variable is a string that comprises the --dir
command-line parameter. This directory is where the final PDF file will be
located. The default is the application’s current working directory.

private String outputDirectory = null;

Public

Main
This is the main entry point required by all Java applications. Its single
argument is an array of String objects that represent the various
command-line parameters presented to the application. The patent printer
passes these arguments to the processArguments method for
interpretation and then invokes the printPatent method to fetch the
images and produce the PDF file. This method catches all exceptions and
translates them into a message printed on standard error.

public static void main(String[] args)
{

PatentPrinter printer = null;

try
{

printer = new PatentPrinter();
if (printer.processArguments(args))

September 10, 2004 Page 7 of 31

{
printer.printPatent();

}
}
catch (Exception e)
{

System.err.println(
"Failed to print document.");

System.err.println(e.getMessage());
printUsage();

}
}

printUsage
Print on standard output a brief synopsis of the command-line parameters
accepted by the patent printer.

public static void printUsage()
{

System.out.println(
"Usage: com.precedia.patent.PatentPrinter");

System.out.println("\t--help <print this help>");
System.out.println("\t--patent <patent number>");
System.out.println("\t--application <application number>");
System.out.println("\t--file <output filename>");
System.out.println("\t--dir <output directory>");

}

PatentPrinter
Create a new instance of the patent printer. This constructor must be
followed by a sequence of calls to initialize the document number, the
output filename, or the output directory.

public PatentPrinter()
{
}

Create a new instance of the patent printer initialized to print the patent
document numbered documentID. The outputFilename specifies the
name of the resulting PDF file. If this argument is null or the empty string,
the documentID is used. The outputDirectory argument specifies the
directory where the PDF file must be placed. If this argument is null or the
empty string the current working directory is used.

public PatentPrinter(
String documentID,
String outputFilename,
String outputDirectory)

{

September 10, 2004 Page 8 of 31

setDocumentNumber(documentID);
setOutputFilename(outputFilename);
setOutputDirectory(outputDirectory);

}

processArguments
This method is a straightforward application of the GNU “Getopt” class to
process the application’s command-line argument as identified by the
argument, args.

The arguments supported by this method are documented in the section
“Using the Patent Printer” on page 3 and example usage is described in
the section “Examples” on page 4.

This method returns true if the command-line arguments were processed
correctly, otherwise it returns false. This method calls printUsage() if
the --help command-line switch is present.

public boolean processArguments(String[] args)
{

boolean continueProcessing = true;
final char OPTION_HELP = 'h';
final char OPTION_PATENT = 'p';
final char OPTION_APPLICATION = 'a';
final char OPTION_FILE = 'o';
final char OPTION_DIR = 'd';

int aChar;
LongOpt[] longOptions = new LongOpt[5];

longOptions[0] =

new LongOpt("help", LongOpt.NO_ARGUMENT, null,
OPTION_HELP);

longOptions[1] =
new LongOpt("patent", LongOpt.REQUIRED_ARGUMENT, null,
OPTION_PATENT);

longOptions[2] =
new LongOpt("application", LongOpt.REQUIRED_ARGUMENT,
null, OPTION_APPLICATION);

longOptions[3] =
new LongOpt("file", LongOpt.OPTIONAL_ARGUMENT, null,
OPTION_FILE);

longOptions[4] =
new LongOpt("dir", LongOpt.OPTIONAL_ARGUMENT, null,
OPTION_DIR);

Getopt getOpt =

new Getopt("PatentPrinter", args, "", longOptions);
getOpt.setOpterr(false);

while ((aChar = getOpt.getopt()) != -1)
{

September 10, 2004 Page 9 of 31

switch (aChar)
{

case OPTION_HELP:
printUsage();
continueProcessing = false;
break;

case OPTION_PATENT:
setDocumentNumber(getOpt.getOptarg()); break;

case OPTION_APPLICATION:
setDocumentNumber(getOpt.getOptarg()); break;

case OPTION_FILE:
setOutputFilename(getOpt.getOptarg()); break;

case OPTION_DIR:
setOutputDirectory(getOpt.getOptarg()); break;

default:
throw new IllegalArgumentException("Invalid
parameters."

);
}

}

return continueProcessing;

}

printPatent
The printPatent method instructs the PatentPrinter to perform the
following operations:

1. Connect to the USPTO website.

2. Fetch the images associated with the printer’s document number.

3. Print each image on a page in the PDF file.

public void printPatent()
{

PatentOfficeWebsite website =
new PatentOfficeWebsite();

PatentDocument document =
website.getDocument(documentNumber);

printPatentDocument(document);
}

Properties
The following three methods initialize the patent printer with the patent or
application document number, the output filename for the PDF file, and
the output directory. If any of the arguments are null the method throws
an IllegalArgumentException.

See the PatentPrinter constructor for further details on how these
methods are used.

September 10, 2004 Page 10 of 31

setDocumentNumber

public void setDocumentNumber(String documentID)
{

if (documentID == null)
throw new IllegalArgumentException(

"Invalid document number");
documentNumber = documentID;

}

setOutputFilename

public void setOutputFilename(String filename)
{

if (filename == null)
throw new IllegalArgumentException(

"Invalid out put filename");
outputFilename = filename;

}

setOutputDirectory

public void setOutputDirectory(String directory)
{

if (directory == null)
throw new IllegalArgumentException(

"Invalid out put directory");
outputDirectory = directory;

}

Protected

printPatentDocument
This method is the workhorse of the PatentPrinter class. It
accepts an instance of a PatentDocument (see the section “}
Patent Documents” on page 21 for details of a patent document) that
represents the document (patent or application) to be fetched from the
USPTO and placed into a PDF file. This method creates an instance of the
iText class PdfWriter and passes to the PDF writer each patent image as
they arrive from the USPTO website.

Details on how an image is fetched from the USPTO site is found in the
section “Patent Office Website” on page 14.

protected void printPatentDocument(
PatentDocument patentDocument)

{

September 10, 2004 Page 11 of 31

Document pdfDocument = new Document();

try
{

File outputFile = getOutputFile();
PdfWriter writer =

PdfWriter.getInstance(
pdfDocument,
new FileOutputStream(outputFile));

pdfDocument.open();
int pageCount = patentDocument.getPageCount();

System.out.print("Printing document ");
System.out.print(outputFile.getAbsolutePath());
System.out.print(" [");
System.out.print(pageCount);
System.out.println(" pages].");

for (int i = 0; i < pageCount; i++)
{

System.out.print("Fetching page ");
System.out.print(i + 1);
System.out.print(" of ");
System.out.print(pageCount);
System.out.println(".");

Image pageImage = patentDocument.getImage(i + 1);
pageImage.setAlignment(Image.MIDDLE);
pageImage.setAbsolutePosition(0, 0);
pageImage.scaleAbsolute(

pageImage.scaledWidth() / pageImage.getDpiX() *
72f,
pageImage.scaledHeight() / pageImage.getDpiY() *
72f);

pdfDocument.add(pageImage);
pdfDocument.newPage();

}

System.out.println("Done.");

pdfDocument.close();

}
catch(DocumentException e) {

System.err.println(e.getMessage());
}
catch(IOException e){

System.err.println(e.getMessage());
}

}

September 10, 2004 Page 12 of 31

Private

getOutputFile
Answer the full pathname for the output PDF file, taking into consideration
the command-line options that specify the document number (--patent, --
application), the output filename (--file), and the output directory (--dir).
If no output filename or output directory is specified, this method
constructs the default output filename which is the document number
followed by a ‘.pdf’ file extension. If either the output filename or directory
is specified a file path is constructed incorporating that filename or
directory.

private File getOutputFile()
{

final String PDF_FILE_EXTENSION = ".pdf";
final String UNKNOWN_FILENAME = "unknown";

File file = null;
String filename = outputFilename;

if ((filename == null) || (filename.length() == 0))
{

if ((documentNumber != null)
&& (documentNumber.length() > 0))

{
filename = documentNumber;

}
else
{

filename = UNKNOWN_FILENAME;
}
filename += PDF_FILE_EXTENSION;

}

if (outputDirectory != null

&& (outputDirectory.length() > 0))
{

file = new File(outputDirectory, filename);
}
else
{

file = new File(filename);
}

return file;

}
}

September 10, 2004 Page 13 of 31

Patent Office Website
The class PatentOfficeWebsite is the interface to the USPTO site. This
class contains knowledge of the location of the image servers and how to
fetch specific images for a given patent document number. Note that any
changes in the implementation of the USPTO site will affect the
implementation of this class.

The image-fetching algorithm implemented by this class is slightly
different from the algorithm used in the pat2pdf script we mentioned in
the section “Introduction” on page 2. The pat2pdf script performs a
successive sequence of HTML page fetches, parsing each page to extract
enough information to fetch the next HTML page. It acts as if an end-user
were browsing through the USPTO website.

In contrast, the implementation of this class uses information posted on J.
Matthew Buchanan’s website, Promote the Progress10, a blog focused on
intellectual property and technology law issues.

In Matthew’s blog posting, he notes that the USPTO maintains two image
servers: patimg1.uspto.gov and patimg2.uspto.gov. In fact, the USPTO
maintains four image servers, two for patent images, and two for
application images. The application image servers are aiw1.uspto.gov and
aiw2.uspto.gov.

If the patent document number has the final two digits of 00 to 49, use
the ‘1’ image server (patimg1.uspto.gov or aiw1.uspto.gov). If the final
two digits are 50 to 99 use the ‘2’ image server (patimg2.uspto.gov or
aiw2.uspto.gov).

For example, given the patent number 6,185,183, one would fetch images
from patimg2.uspto.gov, since the last two digits of the patent document
number are 83. Figure 2 shows the patent document image servers.

10 http://www.promotetheprogress.com/2004/04/deep_linking_to.html

September 10, 2004 Page 14 of 31

http://www.promotetheprogress.com/2004/04/deep_linking_to.html

patimg1.uspto.gov
(Patents 00-49)

Figure 2 USPTO Image Load Balancing

class PatentOfficeWebsite {

Public

PatentOfficeWebsite
Create a new instance of the PatentOfficeWebsite.

public PatentOfficeWebsite()
{
}

getDocument
Given a patent or application document number represented as a
String, return an instance of a PatentDocument object. The
PatentDocument object encapsulates all knowledge on how to
fetch images from the given USPTO website. See the section “}
Patent Documents” on page 21 for details on how to use the
PatentDocument object.

This method is the workhorse of the USPTO site interface. For each
document number we must:

1. Perform an HTTP GET of a “patent image page.” The USPTO website
will respond with HTML that has embedded within it the number of
pages for the given patent document and an URL for where to fetch
the document’s images. The method that implements this step is
fetchPatentImagePage.

patimg2.uspto.gov
(Patents 50-99)

www.uspto.gov

aiw1.uspto.gov
(Applications 00-49) Patent Image Request

Aiw2.uspto.gov
(Applications 50-99)

September 10, 2004 Page 15 of 31

2. Parse the HTML document returned in the previous step looking for the
embedded page count. It turns out that the page count is embedded in
a comment of the form <!—NumPages=XXX -->. The method that
implements this step is patentPageCount.

3. Parse the HTML document returned in the first step looking for the URL
where the actual document images are stored. This URL is identified by
an <embed> tag. The method that implements this step is
patentImageURL.

public PatentDocument getDocument(String documentNumber)
{

String patentPage = fetchPatentImagePage(documentNumber);
int pageCount = patentPageCount(patentPage);
URL patentImageURL =

patentImageURL(patentPage, documentNumber);

return new Patent(

documentNumber, pageCount, patentImageURL);
}

Protected

patentPageCount
Return the number of document pages embedded inside the USPTO web
page represented by the argument. The argument must be an HTML page
fetched from the USPTO website using the fetchPatentImagePage
method.

This method has an intimate understanding of the format of the HTML
page returned by the USPTO site. Specifically, it assumes the HTML
contains a comment of the form <!-- NumPages = XXX -->, where XXX is
an integer representing the number of pages in the patent document.

protected int patentPageCount(String patentPage)
{

final String NUMBER_OF_PAGES_PREFIX = "-- NumPages=";
final String NUMBER_OF_PAGES_SUFFIX = " --";

int pageCount = 0;
int pageIndex = patentPage.indexOf(NUMBER_OF_PAGES_PREFIX);

if (pageIndex != -1)
{

try
{

String pageCountString = patentPage.substring(
pageIndex + NUMBER_OF_PAGES_PREFIX.length());

if (pageCountString != null)
{

September 10, 2004 Page 16 of 31

int pageCountEnd =
pageCountString.indexOf(NUMBER_OF_PAGES_SUFFIX)
;

if (pageCountEnd != -1)
{

String pageCountNumber =
pageCountString.substring(

0, pageCountEnd);
if (pageCountNumber != null)
{

pageCount =
Integer.parseInt(pageCountNumber);

}
}

}
}
catch (NumberFormatException e) { }

}

return pageCount;

}

patentImageURL
Return the URL of the image reference embedded inside the USPTO web
page represented by the argument. The argument must be an HTML page
fetched from the USPTO website using the fetchPatentImagePage
method.

This method has an intimate understanding of the format of the HTML
page returned by the USPTO site. Specifically, it assumes the HTML
contains an <embed> tag whose ‘src’ attribute is the URL used to fetch
individual page images for a given patent document.

The format of this URL is documented in the section “}
Patent Documents” on page 21.

protected URL patentImageURL(
String patentPage,
String documentNumber)

{
final String DOCUMENT_PREFIX = "<embed src=\"";
final String DOCUMENT_SUFFIX = " ";

URL imageURL = null;
int documentIndex = patentPage.indexOf(DOCUMENT_PREFIX);

if (documentIndex != -1)
{

String documentString =
patentPage.substring(documentIndex +
DOCUMENT_PREFIX.length());
if (documentString != null)

September 10, 2004 Page 17 of 31

{
int documentEnd =
documentString.indexOf(DOCUMENT_SUFFIX);
if (documentEnd != -1)
{

PatentDocumentNumber documentID = new
PatentDocumentNumber(documentNumber);
imageURL = imageURLForPatentDocumentNumber(
documentID,
documentString.substring(0, documentEnd));

}
}

}

return imageURL;

}

Private

fetchPatentImagePage
As we described earlier in this software book, two important pieces of
information are extracted from a USPTO website page for a given
document: the page count and an URL on where to obtain its images.

This method performs all the work to take a document number,
patentNumber, and return the proper USPTO website HTML page to
extract the page count and image URL. This method returns the entire
contents of the HTML page.

Any failure to fetch the document page will result in the return of an
empty string. It is possible that this method returns a partial page.

The URL used to fetch the HTML page is documented in the method
imageURLForPatentDocumentNumber.

private String fetchPatentImagePage(String patentNumber)
{

PatentDocumentNumber patentDocumentNumber = new
PatentDocumentNumber(patentNumber);
URL serverURL =

imageURLForPatentDocumentNumber(patentDocumentNumber);
String page = null;

try
{

InputStream imagePageStream = serverURL.openStream();

StringBuffer result = new StringBuffer();

September 10, 2004 Page 18 of 31

BufferedReader reader = null;
try
{

reader = new BufferedReader(new
InputStreamReader(serverURL.openStream()));
String line = null;
while ((line = reader.readLine()) != null) {
result.append(line);
}

}
catch (IOException ex)
{

System.err.println("Cannot retrieve contents of: " +
serverURL);

}
finally
{

if (reader != null)
{

reader.close();
}

}
page = result.toString();

}
catch (IOException e)
{

e.printStackTrace();
}

return page;

}

imageURLForPatentDocumentNumber
As we discussed in the method fetchPatentImagePage, an URL must be
constructed for a given patent document number that represents the
proper location on the UPSTO website to return patent page count and
image URL information. This method contains the knowledge on how to
build that URL given a patent document number.

The URL for a patent document has the form:

http://patimg1.uspto.gov/.piw?Docid=0documentNumber&idkey=NONE

The URL for a patent application document has the form:

http://aiw1.uspto.gov/.aiw?Docid=documentNumber&idkey=NONE

This method substitutes “documentNumber” in the above URL with the
number associated with the argument, documentID. The method
imageURLForPatentDocumentNumber/2 is responsible for calculating the
appropriate server domain name and using the appropriate suffix (1 or 2)

September 10, 2004 Page 19 of 31

of the patimg or aiw domain name attribute depending on the last two
digits of documentID.

private URL imageURLForPatentDocumentNumber(
PatentDocumentNumber documentID)

{
String suffix = "/";

if (documentID.isPatent())
{

suffix += ".piw?Docid=0";
}
else if (documentID.isPatentApplication())
{

suffix += ".aiw?Docid=";
}
suffix += documentID.toString();
suffix += "&idkey=NONE";

return imageURLForPatentDocumentNumber(

documentID,
suffix);

}

imageURLForPatentDocumentNumber
This method works in conjunction with
imageURLForPatentDocumentNumber/1. The responsibility of this method
is to construct the proper server domain name, including which of the two
load-balancing servers (1 or 2) is used for the given documentID. The
algorithm to select which server to use is described in the section “Patent
Office Website” on page 14.

private URL imageURLForPatentDocumentNumber(
PatentDocumentNumber documentID,
String suffix)

{
String urlString = "http://";
URL url = null;

if (documentID.isPatent())
{

urlString += PATENT_IMAGE_WEBSITE_PREFIX;
}
else if (documentID.isPatentApplication())
{

urlString += APPLICATION_IMAGE_WEBSITE_PREFIX;
}
else
{

throw new IllegalArgumentException(
"Unknown patent document type");

}

September 10, 2004 Page 20 of 31

The following code extracts the last two characters from the document
number and determines which of the two image servers (1 or 2)
contain the document images.

String patentNumberString = documentID.toString();
if (patentNumberString.length() > 2)
{

patentNumberString = patentNumberString.substring(
patentNumberString.length() - 2);

}
int patentNumber =
Integer.valueOf(patentNumberString).intValue();
urlString += ((patentNumber % 100) < 50) ? "1" : "2";
urlString += ".";
urlString += PATENT_IMAGE_WEBSITE_SUFFIX;
urlString += suffix;

try
{

url = new URL(urlString);
}
catch (MalformedURLException e)
{

e.printStackTrace();
}

return url;

}

Static Variables
private static final String

PATENT_IMAGE_WEBSITE_PREFIX = "patimg";
private static final String

APPLICATION_IMAGE_WEBSITE_PREFIX = "aiw";
private static final String

PATENT_IMAGE_WEBSITE_SUFFIX = "uspto.gov";
}

Patent Documents
You have now arrived at some support classes that encapsulate the
behavior of patent documents and patent document numbers.

Every patent document has an associated patent document number. The
document number is different depending on the type of document:
patents have one numbering system and patent applications have a
different number systems.

The class PatentDocumentNumber can answer simple questions such as
“Are you a patent?” or “Are you an application?” It can also answer an
integer representation of itself. Note that integer conversion is currently

September 10, 2004 Page 21 of 31

problematic because application numbers can overflow Java’s native int
type. The interface for a PatentDocumentNumber needs to change to
accommodate this.

There is a small hierarchy of patent document classes. The base
PatentDocument class is an abstract superclass for PatentApplication and
Patent documents as shown in Figure 3.

PatentDocument
(abstract)

Patent

PatentApplication

PatentDocumentNumber

Figure 3 Patent Document Hierarchy

Each patent document class is responsible for implementing how to fetch
images associated with the document (getImage()).

Readers should note that the patent number and patent document class
hierarchy and interfaces are not well thought out. Feel free to extend,
enhance, or re-write.

PatentDocumentNumber
class PatentDocumentNumber {

Private

Members

private String id = null;

Public

PatentDocumentNumber

public PatentDocumentNumber(String aNumber)
{

if (aNumber == null || aNumber.length() < 2)
{

September 10, 2004 Page 22 of 31

throw new IllegalArgumentException(
"Invalid patent document number");

}

id = aNumber;

}

isPatent

public boolean isPatent()
{

return id.length() <= 7;
}

isPatentApplication

public boolean isPatentApplication()
{

return id.length() > 7;
}

intValue

public int intValue()
{

int value = 0;

try
{

value = Integer.parseInt(id);
}
catch (NumberFormatException e)
{
}

return value;

}

toString

public String toString()
{

return id;
}
}

September 10, 2004 Page 23 of 31

PatentDocument
The PatentDocument class is an abstract base class for the various types
of documents available from the USPTO site. Subclasses are responsible
for determining the number of pages in the document and how to fetch a
specific page image.

abstract class PatentDocument
{

abstract public PatentDocumentNumber getDocumentNumber();
abstract public int getPageCount();
abstract public Image getImage(int page)

throws DocumentException, IOException;
}

PatentApplication
The class PatentApplication represents a patent application document
on the USPTO site.

class PatentApplication extends PatentDocument {

Private

Members

A PatentApplication stores the document number (id), number of
pages in the document (numberOfPages) as extracted from a USPTO site
page, and an URL used to fetch images from the USPTO site (
(imageURL)). The imageURL must be modified depending on which page
is fetched as documented in the getImage method.

private String id = null;
private int numberOfPages = 0;
private URL imageURL = null;

Public

PatentApplication

Create an instance of a PatentApplication for the given document
number. The page count for this application was previously determined by

September 10, 2004 Page 24 of 31

parsing a USPTO site page. The argument, images, is a prototype URL
used to fetch document images. The format of the images URL is:

http://aiw1.uspto.gov/.DImg?Docid=US006000000&PageNum=1&IDKey=645DB7471AD7
&ImgFormat=tif

The getImage method will modify the PageNum URL parameter depending
on which page is fetched.

public PatentApplication(
String documentNumber, int pageCount, URL images)

{
id = documentNumber;
numberOfPages = pageCount;
imageURL = images;

}

getDocumentNumber

public PatentDocumentNumber getDocumentNumber()
{

return new PatentDocumentNumber(id);
}

getPageCount

public int getPageCount()
{

return numberOfPages;
}

getImage

public Image getImage(int page)
throws DocumentException, IOException

{
final String PAGE_NUMBER = "PageNum=";

Image image = null;
String url = imageURL.toString();
int index = url.indexOf(PAGE_NUMBER);
if (index != -1)
{

String suffix = url.substring(index +
PAGE_NUMBER.length());
int ampersandIndex = suffix.indexOf('&');
if (ampersandIndex != -1)
{

September 10, 2004 Page 25 of 31

suffix = suffix.substring(ampersandIndex + 1);
String prefix = url.substring(0, index);
URL newURL = new URL(

prefix + "PageNum=" + page + "&" + suffix);
image = new PatentOfficeImage(newURL).getImage();

}
}

return image;

}
}

Patent
The class PatentDocument represents a patent document on the USPTO
site.

class Patent extends PatentDocument {

Private

Members

A PatentDocument stores the document number (id), number of pages in
the document (numberOfPages) as extracted from a USPTO site page, and
an URL used to fetch images from the USPTO site ((imageURL)). The
imageURL must be modified depending on which page is fetched as
documented in the getImage method.

private String id = null;
private int numberOfPages = 0;
private URL imageURL = null;

Public

Patent

Create an instance of a Patent for the given document number. The page
count for this application was previously determined by parsing a USPTO
site page. The argument, images, is a prototype URL used to fetch
document images. The format of the images URL is:

September 10, 2004 Page 26 of 31

http://patimg1.uspto.gov/.DImg?Docid=US006000000&PageNum=1&IDKey=645DB7471
AD7&ImgFormat=tif

The getImage method will modify the PageNum URL parameter depending
on which page is fetched.

public Patent(
String documentNumber, int pageCount, URL images)

{
id = documentNumber;
numberOfPages = pageCount;
imageURL = images;

}

getDocumentNumber

public PatentDocumentNumber getDocumentNumber()
{

return new PatentDocumentNumber(id);
}

getPageCount

public int getPageCount()
{

return numberOfPages;
}

getImage

public Image getImage(int page) throws DocumentException,
IOException
{

final String PAGE_NUMBER = "PageNum=";

Image image = null;
String url = imageURL.toString();
int index = url.indexOf(PAGE_NUMBER);
if (index != -1)
{

String suffix = url.substring(index +
PAGE_NUMBER.length());
int ampersandIndex = suffix.indexOf('&');
if (ampersandIndex != -1)
{

suffix = suffix.substring(ampersandIndex + 1);
String prefix = url.substring(0, index);
URL newURL = new URL(

prefix + "PageNum=" + page + "&" + suffix);

September 10, 2004 Page 27 of 31

image = new PatentOfficeImage(newURL).getImage();
}

}

return image;

}
}

Patent Images
The PatentOfficeImage class is a small helper class that stores a page
image URL and performs the actual network fetch of the image from the
USPTO site.

class PatentOfficeImage {

Private

Members
private URL url = null;

Public

PatentOfficeImage

public PatentOfficeImage(URL imageURL)
{

url = imageURL;
}

getImage

public Image getImage() throws DocumentException, IOException
{

return Image.getInstance(url);
}
}

September 10, 2004 Page 28 of 31

Conclusions
The Patent Document Printer application was both an experiment in
writing a Software Book and in building a utility that we have found useful
in our patent infringement, litigation, and intellectual property work.
Although there was an existing USPTO website fetch utility (pat2pdf), it is
our hope that this simple port to an application server language may
prove useful to others.

It is also our hope that some of the concepts we introduced in our essay,
“Thinking with Style” will influence how others write software. The
Appendix contains some thoughts and insights gleaned from writing this
software book.

References
1. Lanovaz, Daniel, “Thinking with Style,” May 3, 2004.

http://www.lanovaz.org/daniel/Shared%20Documents/Thinking%20wi
th%20Style/Thinking_with_Style.pdf

2. Tirosh, Oren and Boege, Thomas, pat2pdf.
http://www.tothink.com/pat2pdf/

3. Sullivan, Sean C., Dynamically Creating PDFs in a Web Application.
http://www.onjava.com/pub/a/onjava/2003/06/18/dynamic_files.html

Appendix
This appendix contains notes on what we learned from writing the patent
printer software book using existing tools, in our case Microsoft Word
2003 Professional (with XML support).

1. A software book can quickly grow very large and there needs to be an
effective way to split a “Master Book” into a series of slave books and
have them linked properly. It is unclear at this time how to best
structure a multi-book solution although following programming
language package or module guidelines are a good starting point.

2. A software book editor needs a better understanding of the Compiled
Code style similar to modern programming language text editors, such
as automatically creating headings and highlighting keywords. Word
does an excellent job manipulating the English components of the
book, but needs further tools for the foreign language (programming
language) components of the book.

3. From a programming language design perspective, we found that
software book headings remove the need for language-specific
modifier keywords. For example, when source code appears in a
particular section such as “Public” there is no reason to prefix language
statements with a “public” keyword. That is, book section modifiers
replace some programming language modifiers.

September 10, 2004 Page 29 of 31

http://www.lanovaz.org/daniel/Shared Documents/Thinking with Style/Thinking_with_Style.pdf
http://www.lanovaz.org/daniel/Shared Documents/Thinking with Style/Thinking_with_Style.pdf
http://www.tothink.com/pat2pdf/
http://www.onjava.com/pub/a/onjava/2003/06/18/dynamic_files.html

4. Indentation of compiled code in a software book argues for the
removal of block enclosure syntax such as the curly braces (‘{‘, ‘}’)
used in languages such as C, C++, Java, C#, etc. Similar to Python,
indentation on the page is more than adequate to signal to the
language compiler the block structure.

5. Creating headings for programming language constructs such as
classes, visibility designators (public, private, protected, etc.), and
functions/methods allowed us to use Word’s “Document Map” to
quickly navigate the software book. The document map is shown in the
following Figure 4. This proved useful in navigating the book.

Document
Map location.
Note the
class and
method
headings
useful in
navigation.

printUsage
method in the
PatentPrinter
class.

Figure 4 Word Document Map

6. There is no support in Word 2003 for embedding the RDF mark-up of
Creative Commons Licenses, although the Creative Commons does
support embedding licenses into PDF files.

7. The current implementation of the software book compiler is not
integrated into Word 2003. The book is translated into Java source and
then compiled by a Java compiler. Programming language errors are
manually mapped to a location in the Word document. We need to
create Word macros that automate this compilation step, or word with
other individuals who are creating software book editors using
OpenOffice, Squeak, or other programming environments.

8. Word automatically changes single quotes around a character constant
into an open signle quote followed by a close single quote. E.g. 'a'
becomes ‘a’. This causes problems with the Java language compiler.
Care must be taken to correct Word’s quote autocorrect feature.

9. Word can automatically capitalize words it believes start a sentence. If
you have this feature enabled, Word may capitalize programming

September 10, 2004 Page 30 of 31

language constructs. Either watch out for this automatic change or
turn off automatic capitalization.

10. We speculate that there must be some programming language design
concepts that will allow a language to be better integrated into a
software book, but we have no firm proposals at this time.

September 10, 2004 Page 31 of 31

	Patent Printer
	Introduction
	Software Books
	Disclaimer
	License

	Using the Patent Printer
	Examples

	Patent Printer Application
	Patent Printer Support Classes
	Class PatentPrinter
	Members

	Public
	Main
	printUsage
	PatentPrinter
	processArguments
	printPatent
	Properties
	setDocumentNumber
	setOutputFilename
	setOutputDirectory

	Protected
	printPatentDocument

	Private
	getOutputFile

	Patent Office Website
	Public
	PatentOfficeWebsite
	getDocument

	Protected
	patentPageCount
	patentImageURL

	Private
	fetchPatentImagePage
	imageURLForPatentDocumentNumber
	imageURLForPatentDocumentNumber
	Static Variables

	Patent Documents
	PatentDocumentNumber
	Private
	Members

	Public
	PatentDocumentNumber
	isPatent
	isPatentApplication
	intValue
	toString

	PatentDocument
	PatentApplication
	Private
	Members

	Public
	PatentApplication
	getDocumentNumber
	getPageCount
	getImage

	Patent
	Private
	Members

	Public
	Patent
	getDocumentNumber
	getPageCount
	getImage

	Patent Images
	Private
	Members
	Public
	PatentOfficeImage
	getImage

	Conclusions
	References
	Appendix

