

Thinking with Style

Writing Software Books
Herein lays a journey past
the Phoenicians, the Greeks, the Romans,
past Gutenberg, Manutius, and Gill,
into the 21st century where the typesetter’s soul
guides the computer programmer.

Daniel Lanovaz

Los Gatos, California

May 3, 2004

TThhiinnkkiinngg WWiitthh SSttyyllee

Thinking with Style
his article describes how ideas long used in the art of
printing, word processing, and desktop publishing enhance
computer programming: writing software books, compiling
software books into programs, and archiving software
books. Styles guide book compilation. Style templates
dictate the book’s consistent look-and-feel. Revision

tracking, commentary, and embedded objects such as images, diagrams,
and video enrich the software book’s expressive power. We must balance
learning to discover and create with learning to communicate and
educate. It is time to dispose of your archaic text editors and start to
author software novels.

Introduction
style (noun)
3. way of writing or performing: the way in which something is written
or performed as distinct from the content of the writing or
performance.

Encarta Dictionary: English (North America)

Everyone has his or her own style. Everyone has his or her own taste. A
rare breed possesses a combination of elegant style and refined taste,
attributes that are largely subjective and difficult to measure. Yet to meet
one of these people, their rarity becomes immediately evident.

A decade of my life, now long past, was spent inside the fascinating world
of Smalltalk and Lisp systems whose writing instruments were based on
graphical bit-mapped display technology, fonts, and style metrics similar
to many of today’s word processing systems. At their foundation,
however, the source code editors in these rich systems degenerated into a
text editor not much different from vi1 or Emacs2. At least Lisp systems
introduced syntax-directed editing to manage all those parentheses.

No matter how evolved the graphical display system, no matter how
evolved the input system, no matter how powerful the computing
platform, computer programming has, unfortunately, remained largely

1 Born from the hands of Bill Joy, vi is part of a class of electronic document editors known as
text editors. Heralded for its simplicity and ubiquity, vi is still in wide use today.

2 Another famous text editor is Emacs. First conceived by Richard Stallman, Emacs made
popular the programmable editor, multiple windows and buffers, and the ability to turn a text
editor into a multifaceted tool. Many versions of Emacs were produced over the years,
including Multics Emacs, Gosling Emacs, GNU Emacs, Epoch, Lucid Emacs, and XEmacs.

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 2 of 29

TThhiinnkkiinngg WWiitthh SSttyyllee

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 3 of 29

unchanged. At its heart, the author manipulates sequences of characters
and lines, not media rich pages within books.

This article introduces software books and describes five principles that
guide their creation:

1. The story is more important than the source code — source code
is supplementary text supporting the structured and media rich
software book.

2. Writing reduces spaghetti thinking — just as structured
programming reduced spaghetti code, writing software books reduces
spaghetti thinking1. Writing down clear and concise thoughts is not
only very difficult, but also very important in the dissemination of
ideas.

3. Use style templates to enforce stylistic consistency — styles and
style preprocessing allow rich and expressive rendering of the software
story and supporting source code (“what you see is not what you
compile”). A style compiler generates programs from software books.
Styles guide not only the on-screen look, but the transformation
(“style preprocessing”) of the book into executable code.

4. Use a standard representation to store and manipulate
software books — forty years ago the choice was s-expressions.
Today the choice is the Extensible Markup Language (XML). I guess we
have progressed over forty years, trading parentheses supporting a
sound mathematical design for angle brackets supporting an ad-hoc
design.

5. Publish your software books for others to learn and enjoy, or
protect your software books as you protect other important intellectual
property; the choice is yours.

I describe a software book authoring system based on Microsoft Word
2003. Word 2003—one of the most widely used “What You See Is What
You Get (WYSIWYG)” documentation tools— was chosen because of its
genealogy2, its compelling feature set, its extensibility and
programmability, and its ability to render documents in XML. Word 2003
is, in short, a powerful tool.

This article, however, is not just about using Word as a source code
editor. I introduce software books and describe their construction using
five guiding principles, but I ultimately want readers to realize these
principles using an array of tools, from open source systems such as

1 I use the phrase “spaghetti thinking” or “spaghetti thought” to draw parallels with the
phrase “spaghetti code”; disorganized and unstructured thought that results in confused,
illogical, and difficult to understand thought processes and/or conclusions.

2 Microsoft Word is arguably a direct descendent of the people, ideas, and work done at
Xerox PARC in the ‘70s and ‘80s.

TThhiinnkkiinngg WWiitthh SSttyyllee

The use of styles to guide the structure and display of pages is certainly
not original. A page in a software book is a sequence of content objects
with styles applied to those objects. I use styles to separate source code
from supporting software book objects. A style sheet details how the
editor renders content on the screen. The style sheet also guides how to
compile the book. Figure 1 depicts how styles are like layers of onion
paper, with the source code at the lower layer, the style sheet applied in

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 4 of 29

OpenOffice1, to commercial publishing systems such as Adobe®
FrameMaker2, to custom designed software book editors3.

Writing Software Books
This article is itself a software book. You can compile this book into an
executable program4. You will notice, however, several features that are
different from typical source code:

1. This software book contains sections, pages, and paragraphs.

2. Pages contain a header, footer, margins, and a body.

3. Styles guide the look of objects on the page.

4. Pages contain other embedded objects such as pictures, drawings
(see below), and even embedded media objects such as sound
recordings and video.

5. Pages may contain revision and editorial mark-up.

6. Pages contain cross references to other parts of the book, and may
contain cross references to other software books.

7. A “What You See Is What You Get” (WSYWIG) editor (Word 2003)
created the software book.

8. Books may optionally be protected using digital rights management
(DRM).

9. The book is stored as XML.

1 http://www.openoffice.org

2 http://www.adobe.com/products/framemaker/main.html

3 Software books as an open-source project.

4 This software book may be the longest “hello, world” program ever written, based on the
venerable and oft cited example from “The C Programming Language” by Brian W. Kernighan
and Dennis M. Ritchie.

http://www.openoffice.org/
http://www.adobe.com/products/framemaker/main.html

TThhiinnkkiinngg WWiitthh SSttyyllee

the middle layer, and the actual graphical representation of objects in the
top layer.

Styles

Content

Rendered Output

Figure 1 Styles

Styles—contained with a template—are the foundation of a software book.
Styles differentiate objects on the page from the supporting source code.
It is the source code styles whose associated content is compiled into the
final executable. In the section “Compiling Software Books” on page 4, I
describe the use of styles to compile books into executable programs.

Writing software books is as much a way of organizing and expressing
ideas as it is writing the instructions that allow a computer to execute
those ideas. Donald Knuth wrote many years ago about the need for
“Literate Programming.”1 Stephen Wolfram created Mathematica®
Notebooks2 that are a combination of book and mathematics engine that
organize and express ideas with mathematical foundation. Finally, Charles
Petzold, a freelance writer who specializes in Windows programming, aptly
described the relationship between writing a book and writing source code
commentary:

The C# compiler has a terrific feature that lets you write
comments with XML tags. However, I’ve chosen not to
make use of this feature. The programs in this book
tend to have few comments anyway because the code is
described in the text that surrounds the program.3

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 5 of 29

1 Knuth, Donald E. Literate Programming. Distributed for the Center for the Study of
Language and Information. xvi, 368 p. 1992 Series: (CSLI-LN) Center for the Study of
Language and Information - Lecture Notes.

2 http://www.wolfram.com/products/mathematica/benefits/notebook.html

3 Petzold, Charles, Programming Microsoft Windows with C#, Microsoft Press, 2002, page xxi.

http://www.wolfram.com/products/mathematica/benefits/notebook.html

TThhiinnkkiinngg WWiitthh SSttyyllee

Software Book Structure
A software book’s structure is similar to most books, comprising a title
page, a table of contents, chapters, appendices, and an index. A software
book may be a collection of separate books compiled into a master book.
Figure 2 depicts the overall structure of a software book.

Master Software
Book Software

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 6 of 29

Figure 2 Master Software Book Structure

An individual software book is a set of pages, with each page divided into
five sections (Figure 3).

Figure 3 Page Regions

As with any word-processing document, page regions contain any object,
from formatted text to embedded drawings to audio and video.

A “software book compiler” translates the master software book and
subordinate software books into the target object. The target object varies
depending on the programming language and desired output. Example
target objects are executables, dynamic-link libraries, assemblies, shared

Header/Top Margin

Footer/Bottom Margin

Software Book Page Content
(Source Code)

Left Margin
/Gutter

Right
Margin

Book

Software
Book Application

Or
Program

Software
Book

TThhiinnkkiinngg WWiitthh SSttyyllee

objects, or documentation. Yes, software books may simply compile into
another book.

A software book is created using an editor capable of managing a style
template, embedding objects within a page such as images, drawings, and
other media objects, and managing the structure of pages, sections,
chapters, and master books comprising a collection of software books
(Figure 4).

Software
book
embedded
objects

Software
book style
selection

Page
margin(s). WYSIWYG edit view

Figure 4 Software Book Editing

Software Book Features
In this section, I describe features that prove invaluable in writing
software books. Authors have used these features for many years, and
software developers should use these features during the design,
construction, editing, and reviewing of their software books.

Revision Control
Arguably, one of the most useful features in many word-processing
applications is revision control: the ability for the editor to not only

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 7 of 29

TThhiinnkkiinngg WWiitthh SSttyyllee

manage change between versions of a document, but also display those
changes to the reader in a concise and graphical manner.

Revision control as used in word-processing is a powerful tool for the
software developer. Imagine you are close to release. You have locked
your software books into your software book control system. You fixed a
defect, but you want to ensure adequate review of the fix before allowing
it into the system. You check out the appropriate software book for edit,
make the necessary changes, and prepare the book for peer review.

Figure 5 shows a portion of a software book modified with revision control
enabled. The software book’s revision control tracks insertions, deletions,
format changes, and comments for multiple authors. Change bars appear
along the left margin.

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 8 of 29

Figure 5 Source code revision control

The revision control system implemented by Word is very powerful, and in
contrast to many traditional source code change management tools,
provides an intuitive and rich mechanism to visually recognize changes.
No more scanning Unix “diff” output looking for context.

Deleted
source code
with location
of deletion.

Change
indicator bar.

Source code
inserted by a
developer.

Comment
inserted by a
developer.

TThhiinnkkiinngg WWiitthh SSttyyllee

Footnotes
There are occasions when one would like to place additional information
into source code, but not distract from the intent and flow of the code.
Footnotes are perfect for this. The author can attach additional
commentary, references, or supporting information, directly into an
expression without affecting the compile-time and run-time semantics of
the expression.

As described in the section “Compiling Software Books”, footnotes are one
of the many objects on a page discarded by the software book compiler.

Figure 6 is an example of a footnote inserted into a snippet of C# source
code.

Footnote marker inserted
directly into the source
code text.

Figure 6 Footnote market

Figure 7 is the footnote text that appears at the bottom of the page.

This footnote text is not compiled
by the book compiler.

Figure 7 Footnote text

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 9 of 29

TThhiinnkkiinngg WWiitthh SSttyyllee

Headers and Footers
Software book authors may want to ensure header and footer information
appears on each page of the book, typically important information
required when printing hardcopies of the book. Authors are free to place
any text within the header and footer. For example, copyright notices,
page numbers, or other identifying information such as the book name or
project name. Figure 8 is prototypical software book footer.

Footer text.

Figure 8 Software book page footer

Authors can directly edit the content of headers and footers (Figure 9),
inserting custom fields such as the current date or current page number.

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 10 of 29

Figure 9 Page Footer

Embedded Drawings
Over the years, I have found it extremely useful to conceptualize structure
and algorithms in the form of diagrams. Unfortunately, diagrams that I
use to explain a portion of software come in two forms: 1) detailed

Date field code
that inserts the
current date.

Page content editing is
disabled while editing
the footer.

WSYWIG
editing of the
footer.

TThhiinnkkiinngg WWiitthh SSttyyllee

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 11 of 29

pictures created in word-processing software as part of requirements,
specification, or design documentation or 2) diagrams embedded within
source code.

Diagrams created within formal documents reside too far from the source
code to which they pertain. Developers must make a mental mapping
between a portion of the specification and the associated source code file.
With software books, the requirements, specification, and design
documents are the source code, compiled to form the resulting
executable. In this way, software books group explanatory diagrams
closer to the source code to which they apply.

When diagrams are embedded within traditional text-based source code,
all too often they are created by using available ASCII characters (e.g. #,
*, |, /, -, etc.). Figure 10 is an example of such a diagram, a snippet of
C++ source code extracted from the Windows header file winerror.h. Note
how the original author uses various ASCII characters to draw the
enclosing boxes.

//
// Values are 32 bit values layed out as follows:
//
// 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
// +---+-+-+-----------------------+-------------------------------+
// |Sev|C|R| Facility | Code |
// +---+-+-+-----------------------+-------------------------------+
//

Figure 10 Header File Diagram

There are four problems with embedding drawings like this within
traditional text-based source code:

1. The diagrams are rudimentary.

2. The diagrams take too much time to create.

3. The diagrams are difficult to maintain.

4. The diagrams must be embedded within source code comments.

A software book takes a different approach by allowing professional
diagrams to be drawn in situ using sophisticated drawing tools. More
importantly, the developer can utilize drawing tools tailored to creating
these rich diagrams. An example of this is the Microsoft Visio drawing
package or the drawing tool included in Word. The software book compiler
omits the drawing during compilation. In addition, drawings appear at any
coordinate within the source code page, located in positions that best
augment and explain the intent of the source code.

Figure 11 is the same code snippet shown in Figure 10 but rendered
within a software book. You should notice four things that differ between
the software book version of the header file and the original header file:

1. Comment delimiter characters do not appear, replaced by text with
the comment style applied.

TThhiinnkkiinngg WWiitthh SSttyyllee

2. The drawing tool is active showing a selected text box,
demonstrating the active nature of the embedded drawing.

3. A table provides structure to the source comments.

4. The page header and footer contain relevant text.

Language
comment
delimiters
are not
required
because of
comment
styles.

Activated
diagram
editor with
selected
text box.

Tables
provide
improved
comment
structure.

Figure 11 Embedded drawings

The current generation of Tablet PCs enable the author to draw diagrams
freehand (Figure 12).

Figure 12 Hand drawn diagram

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 12 of 29

TThhiinnkkiinngg WWiitthh SSttyyllee

Embedded Objects
Creating media-rich compound document architectures is not a new idea.
From Xerox, Taligent, Apple, and Microsoft, the ability to embed arbitrary
objects within a compound document is a powerful and useful technique
for organizing related information.

Microsoft arguably produced the most commercially successful compound
document architecture with its Object Linking and Embedding (OLE)
technology. Based upon Microsoft’s Component Object Model (COM)
framework, applications that support OLE, including this version of
software books, can integrate third-party data and applications directly
into the user-interface of the containing application.

Software books have a new dimension of expression and utility by
providing the capability to embed within themselves application data such
as Excel spreadsheets, Visio diagrams, audio commentary, and a plethora
of third-party data and applications.

Imagine shipping a copy of your software book with an embedded full-
motion video where you explain certain aspects of your system to the
reader, or like I have done, embed an audio message to the reader.

Double-click the speaker icon to listen to the embedded audio
message. Audio is just one of many examples of objects embeddable
within a software book.

Embedded Execution

Imagine a software book where objects on the page are the execution of
the story described in that book. Smalltalk systems such as Squeak1 have
used this technique for years, where one environment is both program
creator and program executor and the distinction between active and
inactive objects is much finer than in Microsoft’s compound document
architecture. Microsoft calls their technology in-place activation, where an
object within a container application becomes active based on a selection
gesture.

Squeak is a teaching tool. Figure 13 shows one page from a book entitled
“Powerful Ideas in the Classroom”2. In a software book, this page would

1 Squeak is a descendant of Smalltalk-80. More details are located at
http://www.squeakland.org.

2 Allen-Conn, B.J. and Rose, Kim, “Powerful Ideas in the Classroom,” Viewpoints Research
Institute, Inc., 2003

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 13 of 29

http://www.squeakland.org/

TThhiinnkkiinngg WWiitthh SSttyyllee

look the same, but the embedded objects would “come to life,” or in-place
activate, when touched. Other sections and pages in the book would
describe the code used to create these objects and be part of the book
itself.

This Squeak
object in-
place
activates
within a Word
software
book.

Figure 13 Page from a Squeak software book1

Writing software books in Squeak, however, requires either a Squeak
virtual machine to in-place activate within Word, or a book authoring
system within Squeak.

Three Dimensional Books

Alice was beginning to get very tired of sitting by her sister on the
bank, and of having nothing to do: once or twice she had peeped into

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 14 of 29

1 This image reproduced with permission from the author(s).

TThhiinnkkiinngg WWiitthh SSttyyllee

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 15 of 29

the book her sister was reading, but it had no pictures or
conversations in it, `and what is the use of a book,' thought Alice
`without pictures or conversation?'1

From the age of six, my son pressed me to help write his first video game.
He is fascinated by sporting games from Electronic Arts, absorbing the
three-dimensional life-like world like a sponge, and masterfully
manipulating the Xbox controller’s six buttons, three joysticks, and two
triggers, while at the same time synthesizing real-time movement of ten
basketball players; five under his control. Now eight years old, he is
already learning how to touch type and, interestingly, loves to type (in
Word) short books of what he has learned.

A three dimensional world is an interesting place to create and store
three-dimensional books. Pull the book off the shelf, open it up, and walk
into it. Systems such as Croquet2 may prove useful in creating three-
dimensional worlds and the three-dimensional books authored by people,
including my son, which both contains the world they create and describes
that world for others to read, learn, and enjoy3.

Commentary
Anyone who has written software is probably guilty of not writing enough
documentation, writing useless documentation, or spending arguably too
much time struggling with writing structured documentation.

Software developers have probably seen at one point in their career the
well documented source code file. You know what I mean. The software
team that decides on a standard file structure including header
documentation and function prologue templates, complete with
“Function:”, “Parameters:”, and “Return Value:” fields to be filled in by the
programmer.

Someone always decides that a long series of ‘*’ or ‘=’ characters should
be used as separators, and paragraphs of text should have line lengths no
longer than eighty characters (or some arbitrary line limit).

I wish someone would perform a study to calculate the amount of valuable
time wasted by developers trying desperately to make their comments
look reasonable, splitting paragraph lines when new text is added, tabbing
and spacing to align the programming language comment delimiters, or

1 Carroll, Lewis, “Alice’s Adventures in Wonderland,” The millennium Fulcrum Edition 2.7a, ©
1991 Duncan Research.

2 http://www.opencroquet.org

3 The Croquet document located at http://glab.cs.uni-
magdeburg.de/~croquet/downloads/Croquet0.1.pdf should itself be a software book.

http://www.opencroquet.org/
http://glab.cs.uni-magdeburg.de/~croquet/downloads/Croquet0.1.pdf
http://glab.cs.uni-magdeburg.de/~croquet/downloads/Croquet0.1.pdf

TThhiinnkkiinngg WWiitthh SSttyyllee

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 16 of 29

waiting as they hold the ‘*’ key down to complete that next divider line.
Unfortunately, I am as guilty as the next at wasting time performing this
mindless task.

The industry did not stop there. Along came the Java programming
language. Now developers spend their time not only tabbing, spacing, and
comment delimiting, but a new series of key strokes—in the form of
javadoc tags—add meta-data to the comments.

It did not stop there. Microsoft agreed that meta-data was required within
comments, but decided to make them XML elements. Now developers are
busy tabbing, spacing, comment delimiting, and typing hundreds of angle
brackets to give meaning to their comments.

At least the Smalltalk and Lisp systems of thirty years ago had the sense
to introduce paragraph editing that would remove the need for the
programmer to format sentence length.

There must be a way to insulate the developer from the tedium of
programming language comment and document structure syntax, yet still
make available meta-data required to process the source code?

There is, in fact, a better way. Styles and templates provide a mechanism
to layer meta-data on top of the source code. Not only does it allow a tool
such as Word to alleviate the tedium of writing comments, but also allows
software tools to process and reason about the source code. Here is how it
works.

Every object in a software book has an associated style. A “style
preprocessor” takes each object in the software book and based on its
style decides how to render the output. Just like the C language
preprocessor transforms one set of tokens into another set of tokens, the
style preprocessor transforms a set of stylized content into another set of
[optionally stylized] content.

A simple example is a programming language comment. All programming
languages have them, but each language tends to introduce a different
syntax to deal with them. Smalltalk uses double quotes. Java and C++
use ‘/*’, ‘*/’, or ‘//’ character sequences. Perl uses the pound character.
Visual Basic uses the single quote character.

TThhiinnkkiinngg WWiitthh SSttyyllee

Java
/** A comment with markup
 * @param argument Is used for something.
 */

C#
/// <summary>A comment with markup</summary>
/// <param name=”argument”>Is used for
/// something.</param>

Smalltalk
“A comment with markup. The parameter, argument, is used
for something.”

Objective-C1

/*!
 @abstract A comment with markup.
 @param argument Is used for something.
 */

C++2

// A comment with no markup.
// Parameter:
// argument – is used for something.

A software book removes the need to deal with programming language
specific syntax by applying styles to the text. The style preprocessor
transforms the stylized text into language-specific tokens consumed by
the language compiler. It is not necessary to implement a linear
preprocessing and compilation sequence. Development environments,
including Smalltalk and Lisp systems, have shown how incremental
compilation and reflective facilities optimize this sequence.

The same comment written in a software book would look to the reader as
follows (depending on the authors chosen style):

A comment with markup.
argument — Is used for something.

The comment style applies to all the text. The word “markup” is an
embolden style applied after the comment style. The word “argument” has
a parameter style applied to it. Figure 14 shows the style structure.

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 17 of 29

Figure 14 Comment Styles

1 Apple HeaderDoc tags used in Objective-C, C, and C++ source code.

2 Systems such as Doxygen are used to add structured comments to C++ source code.

Strong style

Comment style

Parameter style

A comment with markup.
 argument – is used for something.

Parameter name style

TThhiinnkkiinngg WWiitthh SSttyyllee

The style preprocessor for a given language knows how to take the text of
a comment style and render it in a programming language specific
manner. The developer does not need to concern themselves with line
lengths, paragraph editing, or inserting tabs, spacing, and comment
delimiters within the text. Not only that, but the resulting source code is
arguably much more readable than when language-specific comments and
interspersed throughout.

Different style preprocessors can take the same software book and
produce different output. A language style processor generates
programming language output suitable for the associated language
compiler. A document style preprocessor would take the software book
and generate Application Programming Interface (API) documentation.

Ink Comments and Annotations
The current generation of Tablet PCs is one-step closer to realizing the
vision of digital paper and personal digital assistants. Microsoft provides
support for ink within Word 2003, enabling authors and editors to pen
comments and corections within software books.

Spelling and Grammar Checking
When it comes to errant spelling and grammar, I am one of the worst
offenders. Every piece of software I own that supports spell checking has
the feature enabled. Software book editors must provide spelling and
grammar checking. Word has a simple and intuitive feature to highlight
spelling and grammar errors by underscoring the offending text with a
small squiggly line.

It is amusing that a Windows header file (winerror.h), probably more than
a decade old and viewed/edited by hundreds, if not thousands, of
developers, contains both grammar and spelling mistakes (Figure 15),
recognized immediately when placed into a software book.

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 18 of 29

daniel
Pencil

daniel
Pencil

TThhiinnkkiinngg WWiitthh SSttyyllee

Spelling error
indicated by
red underline.

Grammar error
indicated by
green
underline.

Figure 15 Spelling and Grammar Checking

Should I use tabs or should I use spaces?
A common feud in the software community regarding text-based source
code files revolves around the question, “Should I use tabs or should I use
spaces?”

Hotly debated with no clear winner, my answer is simple: use neither, use
styles.

Compiling Software Books
Software books are stored on disk using the Extensible Markup Language
(XML). In my Word 2003 implementation, software books are stored in
Word XML using the Word XML Schema (WordprocessingML)1.

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 19 of 29

1 XML features are only available in Microsoft Office Professional Edition 2003 and stand-
alone Microsoft Office Word 2003. For information of XML in Microsoft Office see
http://www.microsoft.com/office/xml/default.mspx.

http://www.microsoft.com/office/xml/default.mspx

TThhiinnkkiinngg WWiitthh SSttyyllee

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 20 of 29

Word saves and loads XML documents just like traditional Word (.doc)
files. All WordprocessingML files use the ‘.xml’ file extension.

I created the Word template SoftwareBook.dot (the template used for this
book) containing the styles required to format a software book. In
addition, a set of Extensible Stylesheet Language (XSL) files transform a
software book into the native source code piped into a programming
language compiler. A “software book compiler” compiles, or translates,
software books into the native programming language before feeding the
output into the language compiler1. The translation process removes all
style content that does not represent legal programming language text.
This includes objects on a page such as headers, footers, footnotes,
embedded drawings, embedded objects, and any text whose style does
not represent programming language content. The following pseudo-code
compiles a software book.

Foreach object in Book
 If (object.Style isKindOf CompiledCode)
 EmitForCompilation(object.Content)

The file extension “.<source>.xml” represents the XML version of the
source code file. The following non-exhaustive table contains exemplary
file extensions.

Extension Purpose
.h.xml C/C++ language header file
.c.xml C language source file
.cpp.xml C++ language source file
.cs.xml C# language source file
.java.xml Java language source file
.pl.xml Perl language source file
.st.xml Smalltalk language source file
.js.xml JavaScript language source file
Makefile.xml GNU Make
makefile.mak.xml Windows make file
.swb.xml Software book (programming language

specified within the book)
Figure 16 depicts the general flow of compiling a software book into a
target object.

1 As noted earlier, software book environments that provide incremental compilation and
linking, such as Smalltalk, would implement this preprocessing and compilation step in a
manner much different than file-based compilation environments used by other language
compilers (C, C++, C#, etc.).

TThhiinnkkiinngg WWiitthh SSttyyllee

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 21 of 29

Figure 16 Software Book Compilation

Style Preprocessing
Style preprocessing is the transformation of software book content based
on the content’s style. Style rules dictate the format of the output.

Take for example a C# software book that contains source code
interspersed with introductory comments, diagrams, and images. A C#
style preprocessor walks through the software book and discards content
whose style does not derive from the “Compiled Code” style, removing
embedded diagrams and images, footnotes, endnotes, embedded review
comments, and any embedded media objects. The C# style preprocessor
may decide to transform the “Comment” style into syntactically valid C#
comments, or it may decide to discard source comments. Finally, the C#
style processor would emit all content based on the “Compiled Code” style
in a form suitable for compilation by a conformant C# compiler.

If a special-purpose software book editor and compiler is created, this
translation step is unnecessary as the software book compiler would
process the XML elements directly rather than text output.

The one page software book in Figure 17 demonstrates how:

1. The developer writes source code comments without regard to the
programming language’s comment delimiters. Comments are
continuous paragraphs, alleviating the need to worry about line
length.

Makefile.xml

AssemblyInfo.cs.xml

Project

Makefile

AssemblyInfo.cs csc Software Book
Compiler

MusicPlayer.cs.xml MusicPlayer.cs

MusicPlayer.exe

TThhiinnkkiinngg WWiitthh SSttyyllee

2. Graphics are embedded within the source code to add useful
supporting information.

3. Headings provide structure to the software book.

4. Headers and footers supply identifying information on hardcopy.

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 22 of 29

Figure 17 Hello-World Software Book

The C# software book compiles the page in Figure 17 into the following:

Comment
style Embedded

drawing.
Source code
style Heading style

Source code
style

TThhiinnkkiinngg WWiitthh SSttyyllee

using System;
public class HelloWorld {
 public static void main()
 {
 Console.WriteLine(“hello, world”);
 }
}

A C# compiler (csc) compiles this C# conformant program to produce the
final executable (HelloWorld.exe).

Appendix B contains a version of this sample program, and is actual the
source code for this software book.

Storing Software Books
A software book is stored on disk as well-formed XML. Programming
language source that is typically stored in ASCII or Unicode form as a raw
sequence of characters is now stored as a set of XML elements that
conform to a well-defined XML schema. This enables the processing of
complex software books not only by the native software book editors, but
also by third-party programs.

Let us take a closer look at a very simple program written in C# (Figure
18) for Microsoft’s .NET Framework.

Figure 18 Simple Hello-World Program

This C# program does not look syntactically correct. A C# compiler
certainly could not compile the header, “.NET Hello-World Program”.
Likewise, the green comment “This is a simple hello-world program
written in C#” does not contain C# comment delimiters. Finally, the
“hello, world” string as an argument to the WriteLine method does not
include valid string delimiters.

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 23 of 29

TThhiinnkkiinngg WWiitthh SSttyyllee

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 24 of 29

Each segment of characters, however, has applied to it a specific style
that will allow the software book compiler to translate this text into
syntactically valid C# code.

The stylized text is stored as XML elements with enough supporting
information to understand the applied style, enabling a translation
program to interpret the language constructs.

For example, the comment string is represented by the following XML
element:

<w:p>
<w:pPr>

<w:pStyle w:val=”Comment” />
</w:pPr>
<w:r>

<w:t>This is a simple hello-world program written in
C#.</w:t>

</w:r>
</w:p>

In this example the “Comment” style is applied to a string of text. The
<w:pStyle> element identifies the style name that should be applied to
the subsequent element. The <w:t> element is the actual text string to
which the comment style is applied. With those two pieces of information
it is possible to write a translation program, or to write an XSL
transformation, that takes the <w:t> element and appends comment
delimiters before copying the given text.

As with the comment string, the “hello, world” parameter to the WriteLine
method is represented using the following XML elements:

<w:p>
<w:pPr>

<w:pStyle w:val=”CodeIndent2” />
</w:pPr>
<w:r>

<w:t>System.Console.WriteLine(</w:t>
</w:r>
<w:r>

<w:rPr>
<w:rStyle w:val=”StringChar” />

</w:rPr>
<w:t>hello, world</w:t>

</w:r>
<w:r>

<w:t>);</w:t>
</w:r>

</w:p>

The C# expression “Console.WriteLine(hello, world);” is broken into three
main XML elements. The first element’s style is “CodeIndent2” that
indents the “Console.WriteLine(“ statement two levels (no need for tabs or

TThhiinnkkiinngg WWiitthh SSttyyllee

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 25 of 29

spaces; just use an indenting style). The second element’s style is
“StringChar” and modifies the string “hello, world.” The compiler
transforms this element into a syntactically legal C# string constant by
inserting string delimiters1. The third element completes the original C#
expression by appending the closing parenthesis and semi-colon.

The style template (SoftwareBook.dot) contains additional information
about each style such as the font color, font size, paragraph attributes,
and other display-related information. This is why the source code
comments above are displayed in green and the string argument in blue.

Style Hierarchy
Styles in a software book template have a hierarchical structure. The top-
level style I have called “Compiled Code.” All styles that modify source
code derive from the “Compiled Code” style. The top-level code style is
used by the style preprocessor during the book compilation process to
extract relevant objects from the software book and discard those objects
that could not be compiled by a traditional language compiler (such as a
C# compiler).

Styles are stored in the style template. Styles are represented as XML
elements. The following is an example style hierarchy as represented by
Word. The following is a partial definition of the top-level “CompiledCode”
style.

<w:style w:type="paragraph" w:styleId="CompiledCode">
<w:name w:val="Compiled Code" />
<w:basedOn w:val="Normal" />
<w:link w:val="CodeChar" />
<w:rsid w:val="00510BC4" />
<w:pPr>

<w:pStyle w:val="CompiledCode" />
<w:autoSpaceDE w:val="off" />
<w:autoSpaceDN w:val="off" />
<w:adjustRightInd w:val="off" />

</w:pPr>

A code style that indents text derives from the top-level code style.

1 Note that the current system does not perform this syntactic sugar transformation, and
describe this hypothetical string style preprocessing only for illustrative purposes.

TThhiinnkkiinngg WWiitthh SSttyyllee

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 26 of 29

<w:style w:type="paragraph" w:styleId="CompiledCodeIndent1">
<w:name w:val="Compiled Code Indent 1" />
<w:basedOn w:val="CompiledCode" />
<w:rsid w:val="008313B9" />
<w:pPr>

<w:pStyle w:val="CoompiledCodeIndent1" />
<w:ind w:left="360" />

</w:pPr>

Note how the “CompiledCodeIndent1” style has a <w:basedOn> element
that indicates this style is based on, or inherits, the style attributes of the
“CompiledCode” style. The <w:ind> element indicates the indent level for
this paragraph style.

The above XML elements are based on the WordprocessingML schema. It
is possible to create an alternative language-specific schema where XML
elements encode statement parse nodes. This allows software to
manipulate structure of the software book in a more refined manner than
the current scheme permits. For example, the expression “i = 42” may be
represented as:

<assignment>
 <lvalue>

<variable>i</variable>
</lvalue>
<rvalue>

<number>34</number>
</rvalue>

</assignment>

Appendix A contains a sample code style hierarchy.

Publishing Software Books
Writing software books is evolutionary, not revolutionary. Authors
(developers) are free to mix a software book with traditional source code
files, compiling the software books into intermediate files consumed by
traditional compilers1. GNU automake tools can be used to perform the
software book preprocessing step, converting the software book into a set
of .h, .c, or .cpp files, depending on the project.

Software books can be checked into traditional source code control
systems such as CVS, Perforce, or Visual SourceSafe. Managing revision
control in these traditional source control systems is, however,
problematic because these systems manage differences at the XML level
and do not provide the graphically intuitive change tracking I described in
the section “Revision Control” on page 7.

1 Example compilers are gcc, javac, csc, perl, Smalltalk development environments, etc.

TThhiinnkkiinngg WWiitthh SSttyyllee

Digital Rights Management
Digital Rights Management (DRM) is technology that associates rights to
use content directly with the content as opposed to more traditional
access controls systems (file permissions, for example) that acts as
gatekeepers to the content.

In rare situations where a software book contains important intellectual
property such as trade secrets, new patent-pending algorithms, or
business sensitive information, the software books themselves can be
protected by DRM. Since the document itself is protected, there is no need
to rely on system-level protections such as access control lists in the
source code control system or file system. Authors simply restrict access
to a software book based on their need-to-know requirements.

Office 2003 Professional supports Windows Rights Management1 (WRM), a
system to protect Office documents using Microsoft’s DRM system.

You use WRM to restrict who has access to a document and what can be
done with the document, such as print, view, edit, or even copy
information from the document.

Outside of selling software books, I acknowledge the rarity of the situation
where a software book needs DRM protection; I include a description of
this capability because I believe that software books may contain
intellectual property that is as important as other DRM protected content.
In addition, the notion that the source code itself is protected, in the form
of a software book, as opposed to access control rules implemented by file
systems or source code control systems, adds a new dimension to source
code security.

Conclusion
In this article, I describe how software developers need to rethink and
retool how they write software. The story is more important than the
source code. Writing reduces spaghetti thinking. The use of word-
processing tools such as Microsoft Word and mark-up languages such as
XML are an evolutionary step along the road to writing better, more
readable, and more maintainable software. While learning to discover and
create, we need to learn to communicate and educate.

“Talk of nothing but business, and dispatch that
business quickly.”

Manutius Aldus (Aldo Manuzio), Italian Printer and Scholar,
1447-1515.

1 http://www.microsoft.com/windowsserver2003/technologies/rightsmgmt/default.mspx

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 27 of 29

http://www.microsoft.com/windowsserver2003/technologies/rightsmgmt/default.mspx

TThhiinnkkiinngg WWiitthh SSttyyllee

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 28 of 29

Appendix A

Style Hierarchy
The software book template contains the following code-related style
hierarchy. The template also contains styles related to the formatting of
the software book as opposed to the source code.

Character Styles
Comment
Keyword
Variable
Constant

String
Method
Function
Statement

Paragraph Styles
Compiled Code
 Compiled Code Indent 1
 Compiled Code Indent 2
 Compiled Code Indent 3
 Compiled Code Indent 4

TThhiinnkkiinngg WWiitthh SSttyyllee

Appendix B

Introduction
Endowed by my author with anthropomorphic powers, I am a
simple yet informative program that demonstrates the ideas
behind my author’s “Coding with Style” software book. I
demonstrate some of my author’s basic concepts, including
using styles to embed source code within a software book, and
the use of embedded objects such as diagrams to enhance the
readability and maintainability of software books.

Figure 19 shows how I am compiled into an executable program.
An XML representation of myself is scanned for embedded
“Compiled Code” styles. When content with such a style is
encountered, the content is transformed using a set of “style
preprocessing” rules to generate source code recognizable by a
traditional C# compiler. Of course, I am compatible with any
programming language.

5/3/2004 Copyright © 2004 Daniel Lanovaz Page 29 of 29

Coding with Style.cs Software Book
Compiler

Coding with Style.xml C# Compiler

Coding with Style.exe

Figure 19 Hello-World Sample

Imports
using System;

HelloWorld Class
public class HelloWorld
{

public static void main()
{

Console.WriteLine(“hello, world.”);
}

}

	Thinking with Style
	Introduction
	Writing Software Books
	Software Book Structure
	Software Book Features
	Revision Control
	Footnotes
	Headers and Footers
	Embedded Drawings
	Embedded Objects
	Embedded Execution
	Three Dimensional Books

	Commentary
	Ink Comments and Annotations
	Spelling and Grammar Checking
	Should I use tabs or should I use spaces?

	Compiling Software Books
	Style Preprocessing

	Storing Software Books
	Style Hierarchy

	Publishing Software Books
	Digital Rights Management

	Conclusion
	Appendix A
	Style Hierarchy
	Character Styles
	Paragraph Styles

	Appendix B
	Introduction
	Imports
	HelloWorld Class

